
Automatic Translation of Fortran Programs to Multiprecision
David H. Bailey

RNR Technical Report RNR-91-025
May 6, 1993

Abstract
Previously the author developed a package of Fortran subroutines to perform a variety of

arithmetic operations and transcendental functions on floating point numbers of arbitrarily
high precision. This package is in some cases over 200 times faster than that of certain
other packages that have been developed for this purpose.

However, as with other such packages, manually converting a program to use the au-
thor’s routines is a tedious and error-prone process. To facilitate such conversions, the
author has developed a translator program. By means of source directives (special com-
ments), the user declares the precision level and specifies which variables in each subpro-
gram are to be treated as multiprecision. The translator program reads this source program
and outputs a program with the appropriate multiprecision subroutine calls.

This translator program supports multiprecision integer, real and complex datatypes.
The required array space for multiprecision data types is automatically allocated. In the
evaluation of computational expressions, all of the usual conventions for operator prece-
dence and mixed mode operations are upheld. Furthermore, most of the Fortran-77 intrin-
sics, such as ABS, MOD, NINT, COS, EXP are supported and produce true multiprecision
values.

The author is with the NAS Applied Research Branch, NASA Ames Research Center,
Moffett Field, CA 94035. E-mail: dbailey@nas.nasa.gov.

1

0. Introduction
The author’s MPFUN package is a suite of Fortran subroutines that compute mathe-

matical functions on floating point numbers of arbitrarily high precision. It is described
in detail in [1]. MPFUN routines are available to perform the four basic arithmetic opera-
tions between MP numbers, to compare MP numbers, to produce the integer and fractional
parts, to produce a random MP number and to perform binary to decimal and decimal to
binary conversion. Some higher level routines sort MP numbers; perform complex arith-
metic; compute square roots, cube roots, n-th powers, n-th roots, and π; evaluate the
functions exp, log, cos, sin, cosh, sinh, inverse cos and sin; find the real or complex roots
of polynomials; and find integer relations in real vectors.

Computations on large integers can also be efficiently performed using this package by
setting the working precision level two or three words higher than the largest integer that
will be encountered (including products).

One key feature of the MPFUN package is that it was written with a vector supercom-
puter or RISC floating point computer in mind from the beginning. Virtually all inner
loops are vectorizable and employ floating point operations, which have the highest per-
formance on these systems. As a result, MPFUN exhibits excellent performance on such
systems.

Another distinguishing feature of the MPFUN package is its usage of advanced al-
gorithms. For many functions, both a “basic” and an “advanced” routine are provided.
The advanced routines employ advanced algorithms and exhibit superior performance for
extra-high precision (i.e. above about 1000 digit) calculations. For example, an advanced
multiplication routine is available that employs a fast Fourier transform (FFT), and rou-
tines implementing quadratically convergent algorithms for exp and log are also provided.

1. An Automatic Multiprecision Translator
Conversion of a conventional scientific application program to use the MPFUN routines

is generally straightforward, but it is often tedious and error prone. For example, if the
slightest error is made in any of the arguments to the many subroutine calls, not only
will the results be in error, but the program may abort with little information to guide
the programmer. As a result of these difficulties, few serious scientific programs have
been manually converted to use the MPFUN routines. Similar difficulties have plagued
programmers who have attempted to use other multiprecision systems, such as Brent’s
package [4].

To facilitate such conversions, the author has developed a translator program that
accepts as input a conventional Fortran-77 program to which has been added certain special
comments that declare the desired level of precision and specify which variables in each
subprogram are to be treated as multiprecision. This translator then parses the input
code and generates an output program that has all of the calls to the appropriate MPFUN
routines. This output program may then be compiled and linked with the MPFUN package
for execution.

This translation program allows one to extend the Fortran-77 language with the data-

2

types MULTIP INTEGER, MULTIP REAL and MULTIP COMPLEX. These datatypes can be used
for integer, floating point or complex numbers of an arbitrarily high, pre-specified level of
precision. Variables in the input program may be declared to have one of these multipreci-
sion types in the output program by placing directives (special comments) in the input
file. In this way, the input file remains an ANSI Fortran-77 compatible program and can
be run at any time using ordinary arithmetic on any Fortran system for comparison with
the multiprecision equivalent.

This translator supports a large number of Fortran-77 constructs involving multipreci-
sion variables, including all the standard arithmetic operators, mixed mode expressions,
automatic type conversions, comparisons, logical IF constructs, function calls, READ and
WRITE statements and most of the Fortran intrinsics (i.e. ABS, MOD, COS, EXP, etc.).
Storage is automatically allocated for multiprecision variables, including temporaries, and
the required initialization for the MPFUN package is automatically performed.

This processor translates programs to use the standard MP routines from the author’s
MPFUN package. If one wishes to utilize this translator in connection with the extra-high
precision routines of this package, which are designed for precision levels greater than about
1,000 digits, contact the author for instructions.

2. Operation of the Translator Program
This translator program should run on any Fortran-77 system that supports recursive

subroutine references. On some systems, including Sun and IBM workstations, a minor
source modification and/or a special compiler option must be enabled to permit the pro-
gram to run correctly. Detailed instructions for compiling and testing the translator on
various systems are given in a “readme” file that accompanies the program code. The trans-
lator and the accompanying MPFUN package have been successfully implemented on Cray
supercomputers, Sun workstations, SGI workstations, IBM workstations and mainframes,
DEC workstations, HP workstations and Intel parallel computers.

The translator is in effect a compiler in the sense that it identifies and analyzes every in-
put statement. It develops a symbol table that contains type and dimension information for
all variables used in a subprogram. A number of Fortran statements, such as DO, CONTINUE

and OPEN statements, are not modified by the translator. Most other statements are ana-
lyzed in detail, including type declarations, IMPLICIT, COMMON, DIMENSION, PARAMETER,

READ, WRITE and CALL statements, as well as all assignment statements.
If any input statement is modified or translated, the original statement is included in

the output file as a comment, starting with the string CMP>. The comment CMP< is placed
after the translated lines. Warnings and error messages are also written in the output file.
Warnings are issued as comments starting with CMP*. Fatal error messages start with ***.
When a fatal error is detected, the message is output on the output file, and processing is
terminated. Thus to make sure that the translation of an input program was successful,
check the end of the output file to make sure there is no fatal error message. It is also
strongly recommended that the output program be scanned for CMP* warning messages
before it is compiled and executed.

3

3. Precision Level and Explicit Type Directives
These datatype abbreviations will be used hereafter in this paper:

IN Integer
SP Single precision real
DP Double precision real
CO Single precision complex
DC Double precision complex (non-ANSI extension of Fortran-77)
MPI Multiprecision integer
MPR Multiprecision real
MPC Multiprecision complex
MP Denotes the three multiprecision types collectively

An MP statement will be defined as a statement that has at least one MP variable. An
MP subprogram will be defined as a subprogram with at least one MP variable.

At the beginning of a file containing a conventional Fortran-77 code to be translated,
before any program or subroutine statement, a directive (i.e. special comment) of the
following form must be inserted:

CMP+ PRECISION LEVEL 120

This denotes that the maximum precision level to be employed in this program is 120 digits.
Only one such declaration is allowed in a single file, and Fortran-77 files whose translated
routines later will be linked together must have equivalent precision level declarations. This
directive must precede any of the other CMP+ directives to be described below. This and
all other MP directives described in this paper may alternately be written with lower case
alphabetics.

Variables in a subprogram of the input Fortran-77 program file that are to be treated
as MP by the translator program may be declared by explicit MP type directives, such as
the following:

CMP+ MULTIP INTEGER IA, IPR, KMAX3
CMP+ MULTIP REAL SUM, TOL34, X, Y
CMP+ MULTIP COMPLEX W, ZAB

An MP variable must be declared prior to any appearance of that variable in the subpro-
gram, including any appearance in a type declaration, DIMENSION or COMMON statement.
An exception to this rule is that MP variable names appearing in the argument list of a
FUNCTION or SUBROUTINE statement may be afterwards declared. However, if the function
name of a function subprogram is to have an MP type, this name must be declared with
an MP type directive immediately preceding the FUNCTION statement. The dimensions for
MP variables are not included in MP type directives. These dimensions will be taken from
the standard type declaration, DIMENSION or COMMON statement where these dimensions are
defined in the original program.

4

4. Implicit Type Directives
Many Fortran-77 codes utilize implicit typing of variables, either with the default con-

vention or with IMPLICIT statements. For example, many programmers use an IMPLICIT

statement to automatically declare all variables whose first letters are in the ranges A-H

and O-Z to be DP. To simplify the translation of such code, implicit MP type directives
may be used, as in these examples:

CMP+ IMPLICIT MULTIP REAL (A-H, O-Z)
CMP+ IMPLICIT MULTIP INTEGER (M)
CMP+ IMPLICIT MULTIP COMPLEX (C, Z)

Implicit MP type directives should appear at the beginning of a subprogram, just like
standard IMPLICIT statements. An implicit MP type directive overrides any standard
IMPLICIT statement, but it does not override either an explicit MP type directive or a
standard type statement. In function subprograms, an implicit MP type directive may not
be used to declare the type of the function name. Use an explicit MP type directive for
this purpose, placed immediately before the FUNCTION statement.

5. The SAFE and FAST Options
Expressions involving MP variables and constants are evaluated using the operator

precedence conventions of Fortran-77, and using predictable extensions of the Fortran-
77 mixed mode conventions. There are two options for the evaluation of mixed mode
operations: FAST and SAFE. The difference between these conventions may be seen with
the following example, where A and B are MPR and N is an ordinary integer variable:

B = A + 1.D0 / N

With the FAST option, the subexpression 1.D0 / N is evaluated using DP arithmetic, and
the result temporary has type DP. With the SAFE option, which is the default, 1.D0 / N

is performed using MP arithmetic, and the result temporary has type MPR. As the name
signifies, the FAST option produces somewhat more efficient translated code, but it may
also give unexpectedly inaccurate answers, for instance if N in the above example has the
value 7.

An exception to the SAFE option is in the argument lists of subroutine calls or non-
intrinsic function references. Expressions appearing in these lists are always evaluated
using the FAST option, since this corresponds more closely to the Fortran convention that
most users expect. Thus in the statement

B = 3 * FUN (N - 1, A)

the subexpression N - 1 is always evaluated using ordinary integer arithmetic, and the
result temporary, which is passed to FUN, has type IN.

The user may switch between these options by inserting one of the following directives
in the declaration section of any subprogram:

5

CMP+ MIXED MODE FAST
CMP+ MIXED MODE SAFE

For the operators + - * /, Tables 1 and 2 give the types of results with these two
options. Table 3 lists the argument types and results defined for the ** operator. In Table 3,
if a particular combination is not listed, or if its position in the table is blank, then it is not
defined. Comparison operations (i.e. .EQ., .LT., etc.), where one or both of the operands
are MP, are permitted both in logical IF statements and in logical assignment statements.
If one of the operands has type CO, DC or MPC, only .EQ. and .NE. comparisons are
permitted.

6. Multiprecision Constants
With the SAFE option, all IN constants appearing in MP statements are considered MPI

constants and are converted to full precision, and all SP or DP constants in MP statements
are considered MPR constants and are converted to full precision.

With the FAST option, IN, SP and DP constants are recognized and treated as such
by the translator. They are merely passed unchanged to the output program and are
converted to binary by the underlying Fortran system. For modest sized whole numbers
and exact binary fractions, these constants are converted exactly and produce accurate
results when they appear in expressions with MP variables. However, SP or DP constants
that cannot be precisely converted (i.e. 1.01D0), or IN, SP or DP constants that have
more significant digits than can be exactly accommodated in these datatypes, may result
in inaccurate MP calculations.

To avoid such difficulties with the FAST option, the user may explicitly specify that a
constant in the input program will be treated as an MP constant for the output program.
This is done by appending +0 to the constant, as in the following examples:

3+0
-12345678901234567890+0
3.141592653589793+0
1.2345678901234567890D-13+0

The first two constants have type MPI, and the last two have type MPR. Embedded blanks
are allowed anywhere in these constants. MP constants must appear in a context where
the plus operation would actually be performed between the two components of the MP
constant if interpreted according to the standard Fortran rules for evaluating expressions.
For example, the expression N*12345+0 is not treated as containing an MP constant.
Write this as N*(12345+0) if so intended. MP constants are recognized as such only in
MP statements.

There is no definition of this sort for MPC constants, but MPC constants may be
defined by using the special conversion function DPCMPL (see section 7), where the two
arguments are MPR constants.

6

Arg. 1 / Arg. 2 IN SP DP CO DC MPI MPR MPC
IN IN SP DP CO DC MPI MPR MPC
SP SP SP DP CO DC MPR MPR MPC
DP DP DP DP DC DC MPR MPR MPC
CO CO CO CO CO DC MPC MPC MPC
DC DC DC DC DC DC MPC MPC MPC
MPI MPI MPR MPR MPC MPC MPI MPR MPC
MPR MPR MPR MPR MPC MPC MPR MPR MPC
MPC MPC MPC MPC MPC MPC MPC MPC MPC

Table 1: Results of Mixed Mode Arithmetic Operations with the FAST option

Arg. 1 / Arg. 2 IN SP DP CO DC MPI MPR MPC
IN MPI MPR MPR MPC MPC MPI MPR MPC
SP MPR MPR MPR MPC MPC MPR MPR MPC
DP MPR MPR MPR MPC MPC MPR MPR MPC
CO MPC MPC MPC MPC MPC MPC MPC MPC
DC MPC MPC MPC MPC MPC MPC MPC MPC
MPI MPI MPR MPR MPC MPC MPI MPR MPC
MPR MPR MPR MPR MPC MPC MPR MPR MPC
MPC MPC MPC MPC MPC MPC MPC MPC MPC

Table 2: Results of Mixed Mode Arithmetic Operations with the SAFE option (default)

7

Result
Arg. 1 Arg. 2 FAST SAFE

IN IN IN MPI
IN or SP SP SP MPR
IN, SP or DP DP DP MPR
IN, SP or CO CO CO
IN, SP, DP, CO or DC DC DC
IN MPI MPI MPI
IN, SP or DP MPR MPR MPR
CO IN CO MPC
CO SP CO
CO DP or DC DC
DC IN DC MPC
DC SP, DP, CO or DP DC
MPI IN or MPI MPI MPI
MPI SP, DP or MPR MPR MPR
MPR IN, SP, DP, MPI or MPR MPR MPR
MPC IN MPC MPC

Table 3: Defined Combinations for the ** Operator

8

MP constants may be defined symbolically using PARAMETER statements. The parameter
assignment expression for an MP variable may reference previously defined MP and non-
MP parameters, and it may also include intrinsic function references. All such assignments
are performed upon entry to the subprogram the first time it is called. MP and non-MP
constants may not be defined in the same PARAMETER statement.

7. Intrinsic Functions
Table 4 lists Fortran intrinsic functions that are supported by this translator with

MP arguments. References to these functions will be automatically translated to call
the appropriate routines from the MPFUN package, provided the arguments are of the
appropriate MP type. If the SAFE option is in effect, non-MP arguments are first converted
to MP, so that true MP results are always returned. If the user requires either a function
not listed here or a function with an argument type not listed here, contact the author.

Note that Table 4 does not include any of the (obsolescent) type-specific Fortran-77
functions (i.e. AMOD, DABS, MIN0, etc.). This is in keeping with the Fortran-77 convention
that these are defined only for specific IN, SP and DP argument types. References to these
functions are not permitted in MP statements. Use the equivalent generic Fortran-77
functions (i.e. MOD, ABS, MIN, etc.) instead.

Also note in Table 4 that the conversion intrinsics of Fortran-77, namely INT, CMPLX,

DBLE, DCMPLX and REAL, return results of types IN, CO, DP, DC and SP, respectively,
even though the arguments have MP types. This is in keeping with the conventions of
Fortran-77. If one wishes to truncate an MPR number to MPI, form an MPC number
from two MPR numbers, or extract the MPR real and imaginary components of an MPC
number, the special functions MPINT, DPCMPL, DPREAL, DPIMAG (see Table 5) should be
used instead. These special functions are not defined for ordinary SP, DP, CO or DC
arguments in the translated program (although they may be in the input program). Thus,
for example, DPREAL cannot be used to convert a DP number to MPR. Type conversions
such as this can be performed either by simple assignment statements, or else by defining
an external MP function.

To preserve comparable functionality between an input Fortran-77 program that uses
one of these four special conversion functions and the output MP program, equivalent
SP or DP function subprograms should be included in the input file. Table 6 has some
examples of equivalent definitions for these functions that use DP and DC datatypes. If
your program uses ordinary SP and CO datatypes instead, these sample subprograms need
to be changed accordingly.

Do not place any MP directives in these function subprograms. If another subprogram
references one of these functions, it should declare the argument and function names to
be of the appropriate types (i.e. IN, DP or DC). However, the names MPINT, DPCMPL,

DPREAL and DPIMAG do not need to be declared with MP type directives in the subprograms
where they are referenced. In the output program, MP results will be automatically be
returned with types according to Table 5, and these sample subprograms will be ignored.

With the FAST option, non-MP arguments to intrinsic functions appearing in MP state-

9

Function Arg. 1 Arg. 2 Result
ABS MPI MPI

MPR MPR
MPC MPR

ACOS MPR MPR
AINT MPR MPR
ANINT MPR MPR
ASIN MPR MPR
ATAN MPR MPR
ATAN2 MPR MPR MPR
CMPLX MPC CO
CONJG MPC MPC
COS MPR MPR
COSH MPR MPR
DBLE MPI DP

MPR DP
MPC DP

DCMPLX MPC DC
EXP MPR MPR
INT MPI IN

MPR IN
MPC IN

LOG MPR MPR
LOG10 MPR MPR
MAX MPI MPI MPI

MPR MPR MPR
MIN MPI MPI MPI

MPR MPR MPR
MOD MPI MPI MPI

MPR MPR MPR
NINT MPI MPI

MPR MPR
REAL MPI SP

MPR SP
MPC SP

SIGN MPI MPI MPI
MPR MPR MPR

SIN MPR MPR
SINH MPR MPR
SQRT MPR MPR

MPC MPC
TAN MPR MPR
TANH MPR MPR

Table 4: Fortran Intrinsics Supported with MP Arguments

10

Function Arg. 1 Arg. 2 Result
MPINT MPR MPI
DPCMPL MPR MPR MPC
DPREAL MPC MPR
DPIMAG MPC MPR

Table 5: Special MP Conversion Functions

FUNCTION MPINT (X)
DOUBLE PRECISION X
MPINT = INT (X)
RETURN
END

FUNCTION DPCMPL (A, B)
DOUBLE COMPLEX DPCMPL
DOUBLE PRECISION A, B
DPCMPL = DCMPLX (A, B)
RETURN
END

FUNCTION DPREAL (C)
DOUBLE PRECISION DPREAL
DOUBLE COMPLEX C
DPREAL = DBLE (C)
RETURN
END

FUNCTION DPIMAG (C)
DOUBLE PRECISION DPIMAG
DOUBLE COMPLEX C
DPIMAG = DIMAG (C)
RETURN
END

Table 6: DP Equivalents of the Special Conversion Functions

11

ments are passed without change to the non-MP intrinsic functions. For non-MP arguments
the translator recognizes the following “generic” intrinsic function names and assigns result
types according to argument types, in accordance with the standard Fortran conventions:

ABS, ACOS, AINT, AIMAG, ANINT, ASIN, ATAN, ATAN2, CHAR, CMPLX, CONJG,
COS, COSH, DBLE, DCMPLX, DIM, DIMAG, DREAL, EXP, ICHAR, INDEX, INT, LEN,
LOG, LOG10, MAX, MIN, MOD, NINT, REAL, SIGN, SIN, SINH, SQRT, TAN, TANH.

Note that this list, like Table 4, does not include any of the type-specific Fortran-77 intrinsic
functions (i.e. AMOD, DABS, MIN0, etc.). References to these functions are not permitted
in MP statements. Use the equivalent generic Fortran-77 functions (i.e. MOD, ABS, MIN,
etc.) instead.

8. Other Special Functions and Constants
Whenever the translator encounters a reference to COS or SIN in the source program, it

inserts a call to the MPFUN routine MPCSSN. However, in many instances the user’s code
requires both function values for a single argument, often computed in adjacent lines of
code. Since MPCSSN actually returns both the cosine and sine of the input argument at no
extra cost, the two calls to MPCSSN are redundant and may represent a significant waste of
computing time.

If run-time performance is an issue in such programs, the user may optionally replace
the separate references to COS and SIN with a single call to the special MP subroutine
DPCSSN, which has three arguments: the first is the input value, and the second and third
are the output cosine and sine values. The translator recognizes this subroutine name
and will substitute a call to MPCSSN to produce MP results. For compatibility purposes, a
functional equivalent of DPCSSN should be included in the program file. A DP example is
shown in Table 7. The analogous subroutine name recognized for the hyperbolic functions
COSH and SINH is DPCSSH (see Table 7).

Another operation of this nature is root extraction, i.e. B = A ** (1.D0 / N), for
which the efficient routine MPNRT exists in the MPFUN package. Thus it is recommended
(for improved run-time performance) that any code in the input program that performs
root extraction using the ** operator be changed to reference the function DPNRT instead,
i.e. B = DPNRT (A, N). A DP equivalent of DPNRT is shown in Table 7.

One additional special function that many users may find useful produces pseudoran-
dom MPR numbers. The routine MPRAND in the MPFUN package generates pseudorandom
numbers uniformly in the range (0, 1). To access this routine by means of the translator,
one references the special function DPRAND. This function has no arguments. One references
it by means of statements such as A = 3 * DPRAND (). It is not possible to write a com-
pletely equivalent DP version of this routine. However, the basic pseudorandom number
functionality can be reproduced by means of a simple routine such as the one shown in
Table 7.

The sample program definitions for DPCSSN, DPCSSH, DPNRT and DPRAND in Table 7,
like the definitions of the special conversion functions in Table 6, are only for the purpose

12

SUBROUTINE DPCSSN (A, X, Y)
DOUBLE PRECISION A, X, Y
X = COS (A)
Y = SIN (A)
RETURN
END

SUBROUTINE DPCSSH (A, X, Y)
DOUBLE PRECISION A, X, Y
X = COSH (A)
Y = SINH (A)
RETURN
END

FUNCTION DPNRT (A, N)
DOUBLE PRECISION A, DPNRT
DPNRT = A ** (1.D0 / N)
RETURN
END

FUNCTION DPRAND ()
C
C This routine returns a pseudorandom DP floating number nearly uniformly
C distributed between 0 and 1 by means of a linear congruential scheme.
C 2^28 pseudorandom numbers with 30 bits each are returned before repeating.
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (F7 = 78125.D0, R30 = 0.5D0 ** 30, T30 = 2.D0 ** 30)
SAVE SD
DATA SD/314159265.D0/

C
T1 = F7 * SD
T2 = AINT (R30 * T1)
SD = T1 - T30 * T2
DPRAND = R30 * SD

C
RETURN
END

Table 7: Suggested DP Equivalents of DPCSSN, DPCSSH, DPNRT and DPRAND

13

of providing comparable functionality when the input program is run with ordinary SP or
DP arithmetic, and are ignored in the translated program. Do not place any MP directives
in any of these sample subprograms. If another subprogram references either DPNRT or
DPRAND, it should declare the function name to be of the appropriate type (DP in the
examples above). However, the names DPNRT and DPRAND do not need to be declared with
an MP type directive in subprograms that reference them.

The constants log 2 = 0.69314 · · · , log 10 = 2.30258 · · · and π = 3.14159 · · · are com-
puted in the program initialization and are available in any subprogram that contains MP
variables. These values may be referenced by the user by means of the special variable
names DPL02, DPL10 and DPPIC. Whenever any of these names appears in a statement,
the translator substitutes the MP value. For compatibility purposes, any subprogram that
references one of these constants should declare it to be SP or DP and set its approximate
decimal value in a parameter statement. Example:

DOUBLE PRECISION DPPIC
PARAMETER (DPPIC = 3.141592653589793D0)

This parameter statement will be ignored in the output program, and the MP value will
be used instead. The names DPL02, DPL10 and DPPIC do not need to be declared with an
MP type directive. Do not attempt to define any of these values by means of assignments
or function calls.

9. Input and Output of MP Numbers
MP variables may appear in READ or WRITE statements only with the following two

special forms:

WRITE (6, *) VAR1, VAR2(I), VAR3(I,J)
READ (11) VAR1, VAR2, VAR3

Either form may be a READ or WRITE, but neither may employ implied DO loops. Convert
implied DO loops to explicit DO loops instead. The unit numbers may be integer variables
instead of integer constants. Non-MP variables and constants may be included in the list,
in which case they are handled using ordinary Fortran I/O, but such data must appear on
separate lines in the input file.

The first form is used for input and output of individual MP numbers (not entire
unsubscripted arrays) in ordinary decimal form. The digits of the number may span more
than one line. A comma at the end of the last line denotes the end of an MP number.
Input lines may not exceed 120 characters in length, but embedded blanks are allowed
anywhere. The exponent is optional in an input number, but if present it must appear
first, as in the following example:

10 ^ -4 x 3.14159 26535 89793 23846 26433 83279
50288 41971 69399 37510,

14

MPC numbers are input or output as two consecutive MPR numbers. The output of an
MP write operation is in the correct form for a subsequent MP read operation. By default,
all digits of an MP number are output. The user can control the number of mantissa digits
output by including a directive such as

CMP+ OUTPUT PRECISION 200

in the declaration section of any subprogram. It remains in effect until the end of file or
until another such directive is encountered.

The second form of READ/WRITE statement above is used to perform binary I/O of entire
MP arrays. Subscripted variables are not allowed in the second form.

10. Controlling the Multiprecision “Epsilon” and Precision Level
Many programs need to control the MP “epsilon” for performing comparisons. To this

end, the user can reference the special MP constant DPEPS. For compatibility purposes, any
subprogram that uses DPEPS should declare it to be SP or DP and set it to some nominal
small value in a parameter statement. Example:

DOUBLE PRECISION A, B, DPEPS
PARAMETER (DPEPS = 1D-16)

C
IF (ABS (A - 10.D0) .LE. DPEPS) B = 0.

Whenever this name appears in a subprogram that contains MP variables, the translator
substitutes the MP “epsilon” value, which by default is 107−D, where D is the number
of digits of precision specified in the precision level directive. DPEPS does not need to be
declared with an MP type directive. The MP epsilon value may be modified (independent
of the precision level directive) by inserting a directive such as

CMP+ EPSILON 1E-200

in the declaration section of any subprogram (for instance, adjacent to the parameter
statement in which DPEPS is defined). It remains in effect until the end of file or until
another such directive is encountered.

The number of mantissa words allocated by the translator for MP numbers is approx-
imately one seventh the number of digits specified in the precision level directive. The
first dimension of MP arrays is this number plus 4. The user may access the number of
mantissa words in the special constant MPNWP. For compatibility purposes, any subprogram
that uses MPNWP should be declare it to be of type IN and set it to some nominal integer
value in a parameter statement. Example:

INTEGER MPNWP
PARAMETER (MPNWP = 1)

15

MPNWP, like MPL02 and MPPIC, is considered a constant and may not be changed. If one
wishes to dynamically change the working precision level within a program (which is not
recommended for novice users), this may be done by calling the MPFUN routines MPSETP
and MPINQP, as follows:

CALL MPSETP (’NW’, 35)
CALL MPINQP (’NW’, NX)

The first line sets the working precision level to 35 words. This value must not be greater
than the value of MPNWP. The second line sets NX to be the value of the current working
precision. If the user is not concerned about possible name conflicts, the same functions
can be accomplished by simply including the MPFUN common block

COMMON /MPCOM1/ NW, IDB, LDB, IER, MCR, IRD, ICS, IHS, IMS

in the subprogram and directly modifying the variable NW.

11. Single Precision Scratch Space for the MPFUN Package
The maximum amount of SP scratch space in common block MPCOM3 (see the documen-

tation for the MPFUN package [1]), cannot be determined in advance by the translator
program. The MPFUN package allocates 1024 SP cells in this block, which for most pro-
grams is sufficient. If the “insufficient single precision scratch space” error is encountered
during execution of the resulting MP program, place a directive of the form

CMP+ SCRATCH SPACE 2000

at the beginning of the input file, before the PROGRAM statement but after the precision
level directive. The number placed on this line should be at least the size mentioned in
the error message.

12. Other Restrictions and Limitations
It should be emphasized again that the Fortran-77 language is not perfectly or com-

pletely supported by the translator. In addition to the restrictions already mentioned, a
number of other limitations apply. A complete list is included below. However, note that
in almost every case there is a simple change that can be made to the input program to
make it acceptable to this translation program, while retaining both its functionality and
Fortran-77 compliance. The majority of these restrictions are merely good programming
practice.

1. A number of identifiers beginning with DP and MP are reserved for use by the trans-
lator, and the translator will flag an error if any of these appears in the user’s input
program. To be safe, do not use such names in your program, other than as instructed
in this paper.

16

2. ENTRY, typed FUNCTION (i.e. INTEGER FUNCTION), assigned GOTO, arithmetic IF, READ
or WRITE without parentheses, and PRINT statements are not allowed. Please replace
these constructs, which in most cases are obsolescent, with more conventional alter-
natives: normal subroutine calls, FUNCTION statements followed by type statements,
computed or ordinary GOTO statements, logical IF statements and normal READ or
WRITE statements, respectively.

3. References to the (obsolescent) type-specific Fortran-77 intrinsic functions (i.e. AMOD,
DABS, MIN0, etc.) are not allowed in MP statements. Use the equivalent generic
Fortran-77 functions (i.e. MOD, ABS, MIN, etc.) instead.

4. Statement functions may not be used to define MP functions. Convert these into MP
function subprograms or subroutines.

5. MP variables may not appear in DATA statements. Convert these into parameter or
assignment statements.

6. MP variables or constants may not appear in DO statements, array dimensions or
array subscripts.

7. An MP statement may not be the terminal line of a DO loop. Place the line number
on a CONTINUE line immediately following the statement. If the line number is also
the target of a GOTO, the DO loop must be changed to use a separate terminal line
number.

8. MP variables or constants may not appear in formatted READ or WRITE statements,
and other restrictions apply to the I/O of MP data. See section 9 for details.

9. The logical operators .EQV. and .NEQV. may not appear in MP statements. Rewrite
such statements using .NOT., .AND. and .OR. operators, or move such subexpres-
sions to a separate statement.

10. Complex constants [i.e. (3., 2.)] may not appear in MP statements. Either use
the intrinsic functions CMPLX or DCMPLX, or else assign such constants to CO or DC
variables in separate statements.

11. Except for variables in the argument list, variables that appear in a type statement
or an MP type directive may not have previously appeared in the subprogram.

12. A single IMPLICIT statement may be used to declare the initial letter(s) for only one
datatype. A single COMMON statement may be used to declare only one common block.

13. DATA statements and FORMAT statements may appear only after the end of the specifi-
cation section of the program, i.e. only after type declaration, DIMENSION statements,
COMMON statements, etc.

17

14. Fortran keywords (i.e. CALL, DO, IF, READ, RETURN, etc.) may not be used as
identifiers.

15. Embedded blanks may not appear in Fortran keywords, line numbers, variable names,
comparison operators and logical operators. Exceptions: DOUBLE PRECISION, DOUBLE

COMPLEX, ELSE IF, END DO, END IF, GO TO are permitted.

16. Fortran keywords must be followed by a blank or an operator. Also, a blank must
follow the line number in a DO statement.

17. If an integer constant is followed by a comparison or logical operator, the constant
and the operator must be separated by a blank (i.e. 12340 .LE. X).

18. Input code must be in the standard 72 column format. Comments up to 80 characters
long are correctly copied to the output file.

19. Tab characters are not allowed. Convert these to blanks with a text editor.

On the other hand, this program will correctly process code with the following features,
which do not comply with the Fortran-77 standard, provided the user’s Fortran compiler
also supports such constructs:

1. Both upper and lower case alphabetics may be used in identifiers and Fortran key-
words.

2. Long variable names (up to 16 characters long) are permitted.

3. Character strings may be delimited with pairs of quotation marks ["] instead of
apostrophes [’].

4. The double complex (DC) datatype is supported, including DC intrinsics.

5. The IMPLICIT NONE statement is supported. Untyped variables found in executable
MP statements will be flagged as errors.

6. The datatypes INTEGER*4, REAL*8, etc. are supported. REAL*8 is interpreted as
DP; COMPLEX*16 is interpreted as DC.

7. .T. and .F. may be used in place of the logical constants .TRUE. and .FALSE..

8. DO-ENDDO constructs are permitted.

9. Recursive subroutine calls are permitted.

18

13. Error Checking
More than 100 error conditions are checked by the translator program, and if any of

these is encountered, an error message is output, together with the line number of the
statement in the input file where the error was detected. An attempt has been made to
cover all of the prohibited situations mentioned in this paper, as well as many violations
of the standard rules of Fortran. In some cases, certain possible Fortran errors are not
checked by the translator, because if they do occur, they will certainly be trapped when
an attempt is made to compile the output program.

One example of an error condition that is checked by the translator is any type mismatch
between the argument list of a reference to a subroutine or function and its definition
(provided both are in the same file). Such errors can easily occur when, for example, a
DP constant is used as an argument, but the defining subprogram expects a MPR value.
These errors can also occur if the name of an MPR function is not declared to be of type
MPR in the subprograms where it is referenced.

Although this is certainly not a recommended programming practice, type mismatches
between argument lists do exist in some working Fortran programs. For example, some
codes pass a scratch array of type real to a subroutine when a complex scratch array is
expected. Because in some cases it may be difficult to remove type mismatches from an
existing code, and since the resulting code may work correctly anyway, a provision has
been made for the translator to toggle type error trapping on and off. This is done by
inserting one of the following directives in the declaration section of any subprogram:

CMP+ TYPE ERROR ON
CMP+ TYPE ERROR OFF

It remains in effect until the end of file or until another such directive is encountered.
When type error trapping is disabled with the OFF option, a non-fatal warning message is
included in the output file for the programmer’s information.

14. Performance of Translated Code
A number of fairly large programs have been successfully translated with this program.

These include the Linpack benchmark [6], both a real and a complex FFT benchmark
[2], a vortex analysis code [8], a Feigenbaum number calculation [5], implementations of
Ferguson’s PSOS and PSLQ integer relation algorithms [3, 7], and an implementation of
the RSA public-key cryptosystem [9]. All appear to work correctly.

In most cases where the author had previously coded the application by hand using the
MPFUN routines, the performance of the translated code (using the FAST option) is not
significantly different. Thus it appears that in most cases there will not be a performance
penalty for using the translator. Partly this is due to the fact that in translating arithmetic
expressions, the translator program separately handles each of the many mixed mode cases,
as opposed to merely handling all cases in a stock fashion.

However, users should be prepared for a substantial slowdown, compared with conven-
tional IN, SP or DP code. For example, on a Silicon Graphics RISC workstation, the MP

19

version of a complex FFT benchmark, with a precision level of 40 digits, ran 135 times
slower than the same program with ordinary DP (64-bit) arithmetic. In other applications
with higher precision, slowdown factors in the hundreds have been observed. Thus while
such computer runs are indeed possible, they are not to be considered lightly.

Acknowledgments
The author wishes to acknowledge helpful comments and suggestions by W. Kahan of

the University of California, Berkeley and by K. Briggs of the University of Melbourne,
Australia.

20

References

[1] D. H. Bailey, “MPFUN: A Portable High Performance Multiprecision Package”, Tech-
nical Report RNR-90-022, NASA Ames Research Center, 1990. Submitted for publica-
tion.

[2] D. H. Bailey, “A High Performance FFT Algorithm for Vector Supercomputers”, In-
ternational Journal of Supercomputer Applications, vol. 2 (Spring 1988), p. 82 - 87.

[3] D. H. Bailey and H. R. P. Ferguson, “Numerical Results on Relations Between Numeri-
cal Constants Using a New Algorithm”, Mathematics of Computation, vol. 53 (October
1989), p. 649 - 656.

[4] R. P. Brent, “A Fortran Multiple Precision Arithmetic Package”, ACM Transactions
on Mathematical Software, vol. 4 (1978), p. 57 - 70.

[5] Keith Briggs, “A Precise Calculation of the Feigenbaum Constants”, Mathematics of
Computation, vol. 57 (1991), p. 435 - 439.

[6] J. J. Dongarra, “The Linpack Benchmark: An Explanation”, SuperComputing (Spring
1988), p. 10 - 14.

[7] H. R. P. Ferguson and D. H. Bailey, “A Polynomial Time, Numerically Stable Integer
Relation Algorithm”, Technical Report RNR-91-032, NAS Applied Research Branch,
NASA Ames Research Center, Moffett Field, CA 94035, March 1992.

[8] R. Krasny, “Desingularization of Periodic Vortex Sheet Roll-Up”, Journal of Compu-
tational Physics, vol. 65, no. 2 (August 1986), p. 292 - 313.

[9] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, Communications of the ACM, vol. 21 (1978), p. 120
- 126.

21

